

USER MANUAL

ScratchDuino.Lab

St.Petersburg
2015

JSC άTyrnetέ

ScratchDuino.Lab

St.Petersburg
JSC άTyrnetέ

2015

Printed by the order of

JSC άTyrnetέ

Reviewer:
 τ Professor Irina B. Gotskaya, EdD, Chairperson of IT Education Methodology
Dept. at Herzen State Pedagogical University (St.Petersburg)

Elena A. Vostrikova
ScratchDuino.Lab: User Manual / Elena A. Vostrikova, Leonid S. Zakharov,
Ekaterina A. Lvova. τ St.Petersburg: Reprographics Center of JSC άTyrnetέ,
2015. τ 54 p.

This User Manual explains how to operate ScratchDuino.Lab, which is an elec-
tronic device with built-in sensors of sound and light, an adjustable resistor,
and interface to attach extra sensors.

The Manual contains the following information:

1. Instructions on installing the software for the three major operating systems
(OS).
2. List of the components in the box, the methods for sensors testing and cali-
bration. Essential information about the programming language Scratch need-
ed for the work.
3. Examples of working scripts to use with the sensors.
4. Instructions on registering and placing individual projects at the portal
wiki.scratchduino.com, as well as the opportunities of childrenΩǎ and adultsΩ
cooperation within the framework of the festival άScratchDuino Libre Robot-
icsέ.

ϭ JSC άTyrnetέ, 2015

Table of Contents

Installing the Software for ScratchDuino.Lab ... 4

Windows OS Family .. 4

Linux OS Family ... 8

Mac OS Family .. 12

Components of the Kit ... 13

Sensors Testing and Calibration .. 15

Basic Concepts of Scratch ... 19

Basic Algorithms of Scratch ... 22

Projects To Make Use of the ScratchDuino.Lab Components 28

Buttons ... 28

Slider ... 29

Sound Sensor .. 30

External Temperature Sensor .. 33

External sensors .. 35

Promoting the Community of the Like-Minded .. 38

Wiki Portal of Project ScratchDuino: Signing up .. 38

wiki.scratchduino.com: Uploading a Project ... 44

Rules on Discussing the Projects at wiki.scratchduino.com 47

Information Sources ... 50

Appendix .. 51

Statutes of ScratchDuino Libre Robotics Festival ... 51

 4

Installing the Software for ScratchDuino.Lab

Windows OS Family

 To work successfully with ScratchDuino.Lab under Windows, it is
necessary to install at least the visual programming environment for
Scratch and Arduino UNO driver. In addition, advanced users might
want to install along with the Arduino IDE the Arduino deǾŜƭƻǇŜǊΩǎ

environment as well.

The software can be obtained from:

½ the CD, shipped with ScratchDuino.Lab;

½ the file server of the project τ http://files.scratchduino.ru/ ;

½ the official developers website.

Installation from the CD or from the File Server of the Project

How to install Scratch: run the installation file ../windows/Scratchduino.exe

from CD or or download and run the installation file from the file server τ

http://files.scratchduino.ru/Software/Windows/Scratchduino.exe

The Installation Wizard will ask you to choose a language τ choose English,
then press ˻ ,͟ Next, and Install. In a few seconds, two icons will appear at the
desktop (or in the application list of the Start button, depending on individual
setup)τ Scratch and Scratchduino Robot (Fig. 1).

Fig. 1. The icons to appear.

 To operate Scratchduino.Lab, the Scratch software is intend-
ed! To launch, click the Cat icon.

http://files.scratchduino.ru/

 5

How to install the driver: run the executable../windows/ScratchDuino_
drivers.exe from CD or download it from the file server τ

http://files.scratchduino.ru/Software/Windows/ScratchDuino_drivers.exe.

and run.
In the dialog boxes of the Installation Wizard, click Yes, then Next, Install, and
Finish.

Fig. 2. Dialog boxes of Installation Wizard.

A note for users: You will not find any Arduino IDE software either on the CD or
on the file server of the project. This is intentional, as with Arduino IDE installed
it is possible to reprogram the pre-programmed Arduino UNO cartridge. To
avoid confusions, we do not recommend Arduino IDE installation for
inexperienced users. Advanced users can install the Arduino IDE software from
the deǾŜƭƻǇŜǊΩǎ ǿŜōǎƛǘŜ (see the next section).

http://files.scratchduino.ru/Software/Windows/ScratchDuino_drivers.exe

 6

How to Install the {ƻŦǘǿŀǊŜ ŦǊƻƳ ǘƘŜ 5ŜǾŜƭƻǇŜǊΩǎ ²ŜōǎƛǘŜ

1. Download the installer for Scratch 1.4 from the developerΩs website:
http://download.scratch.mit.edu/ScratchInstaller1.4.exe.

Run the installer, choose English as installation language and follow
the instructions of Installation Wizard. After a successful installation
youΩll see the Scratch icon (Cat).

2. Download the fresh version of the Arduino IDE software from the develop-
ŜǊΩǎ website https://www .arduino.cc/en/Main/Software and follow the instal-
lation instruction τ https://www.arduino.cc/en/Guide/Windows .

How to Connect ScratchDuino.Lab via USB Cable

Plug the USB cable, shipped along with ScratchDuino.Lab, into the USB port of
the PC and into the Arduino UNO cartridge. To ensure the communication be-
tween the Scratch and ScratchDuino.Lab, you need to know the number of se-
rial port connecting ScratchDuino.Lab to the PC. For this purpose, go to Device
Manager, usually found at Control Panel.

Fig. 3. A snapshot of Device Manager window, showing the number
of serial (COM) port, to which the device is connected automatically.

http://download.scratch.mit.edu/ScratchInstaller1.4.exe
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Guide/Windows

 7

Remember the number of the COM port! It is the port ȅƻǳΩƭƭ ƴŜŜŘ ǘƻ select
in Scratch. In Fig. 3, Arduino UNO matches the port COM9.

Connecting Scratchduino.Lab and Selecting a Port in Scratch
Launch Scratch. In the Scratch window that opens, select a blue block Sensing,
then right-click on the block Sensor and select show ScratchBoard watcher
(Fig. 4).

Fig. 4. Right-click menu of the Sensor block.

Right-click on the grey background and choose select serial/usb port (Fig. 5).

Fig. 5. Right-click menu of the ScratchBoard.

Select the port, to which ScratchDuino.Lab is connected, in the drop-down list.

 8

Linux OS Family

 There are three ways to install the ScratchDuino.Lab software for
GNU/Linux OS family:

½ Use the CD, shipped with the kit;

½ Download the packages from the file server of the project

http://files.scratchduino.ru/;

½ Install from a dedicated repository containing the installation packages

for ScratchDuino.Lab software:

 http://download.opensuse.org/repositories/home:/scratchduino/ .

 It is not recommended to install scratch_1.4 and virtual machine squeak-
vm via the official repositories of your Linux distribution or download from
the deǾŜƭƻǇŜǊΩǎ ǿŜōǎƛǘŜ. In such a case, Scratch will not work with a serial
port, and therefore, you will not be able to program ScratchDuino.Lab in

Scratch. The version of the package for the virtual machine squeak-vm, based
on which Scratch 1.4 operates, must be 4.0.3-2202.

Installation from the CD

The packages for installing the software under an OS of Linux family are on the
CD in the ../linux folder. Installation packages are built for some of the most
common Linux distributions (RHEL/CentOS, Fedora, Scientific Linux, Ubuntu,
Debian, openSUSE, SLED), and found in a folder with the appropriate name
mentioning the version of the distribution. If there is no distribution you need,
select a distribution, closest to the desired. For example, to install ScratchDuino
on Linux Mint 17, use the packages from the ../linux/xUbuntu14.04/ folder.

For Deb-based distributions, install the packages scratch 1.4.0.7, squeak-vm
4.0.3, and squeak-plugins-scratch.

For RPM-based distributions, install the packages squeak-vm 4.0.3 and scratch
1.4.0.7.

 After the successful installation, you will find the launcher icons for
Scratch (Cat) at your graphical desktop.

Besides you can run Scratch and ScratchDuino from the console; for this, type
scratch at the command prompt.

http://download.opensuse.org/repositories/home:/scratchduino/

 9

Installation from the File Server of the Project

The installation is similar to the installation from the CD. Download the packag-
es that match your Linux distribution, from

http://files.scratchduino.ru/Software/Linux/ , and install them.

Installation from a Repository

½ Add the repository for your distribution as described below:

½ for openSUSE and SLE, type in the console the line

$ sudo zypper addrepo
http://download.opensuse.org/repositories/home:/scratchduino/XXXXXXX/
ScratchDuino

½ for CentOS, RHEL, Fedora, and ScientificLinux, add a file /etc/yum.

repos.d/scratchduino.repo, with the following contents:

[scratchduino]
name=ScratchDuino
type=rpm-md
baseurl=http://download.opensuse.org/repositories/home:/scratchduino
/XXXXXXX/
gpgcheck=1
gpgkey=http://download.opensuse.org/repositories/home:/scratchduino/
XXXXXX/repodata/repomd.xml.key
enabled=1

½ for Debian and Ubuntu, add a line to the file /etc/apt/sources.list:

deb

http://download.opensuse.org/repositories/home:/scratchduino/XXXXXXX/ /

 In all cases, XXXXXXX must be replaced with the name and version of your
Linux distribution.

For Deb-based distributions, install the packages scratch 1.4.0.7, squeak-vm
4.0.3, and squeak-plugins-scratch from the added repository.

For RPM-based distributions, install the packages squeak-vm 4.0.3 and scratch
1.4.0.7 from the added repository.

http://files.scratchduino.ru/Software/Linux/

 10

Post-Installation Configuring

After successful installation of the software to operate ScratchDuino.Lab, you
will need to make some post-installation configuring.

½ Arduino UNO is accessed via /dev/ttyACM<ͤ ͔ͦͣͪ>. By default, the

/dev/tty* devices are available to the users from the dialout group only. There-

fore, the user who is going to work with ScratchDuino.Lab must belong to the

dialout group.

Add the user to the dialout group!

½ If your Linux distribution is either Ubuntu 12.04 and later or an Ubuntu-

based distribution (for example, Mint), you need to check your windows man-

ager (WM). By default, it is Compiz. Unfortunately, Compiz can cause conflicts

with Scratch. ¢ƘŀǘΩǎ ǿƘȅ it is recommended to install the package gnome-

session-fallback (for Ubuntu 14.04 and later τ gnome-session-flashback), so

that the WM choice would be available at the login window (Fig. 6).

Fig. 6. Login window.

When logging in, select the Metacity WM!

 11

Connecting ScratchDuino.Lab and Selecting a Port in Scratch

Launch Scratch from the GUI or from the console. In the Scratch window that
pops up, select the blue block Sensing, then right-click on the block Sensor and
select show ScratchBoard watcher (Fig. 7).

Fig. 7. Right-click menu of the block sensor.

Then right-click on the grey background and choose select serial/usb port
(Fig. 8).

Fig. 8. Right-click menu of the ScratchBoard.

Select /dev/ttyACM0 in the drop-down list.

 12

Mac OS Family

To install the software for Mac OS, it is possible to use the CD,
shipped with ScratchDuino.Lab, or to download the installation
files from the file server of the project.
On the CD, the installation file is in the ../mac/Scratch.dmg
fol e͍r.
The link to download from the file server is
http://files.scratchduino.ru/Software/Mac/Scratch.dmg.

To install the software, just open Scratch.dmg and drag the Scratch folder into
the Application folder (Fig. 9).

Fig. 9. The window looks like that.

Open Application in a file manager, go to the Scratch folder, and run the exe-
cutable (Fig. 10).

Fig. 10. Running the executable.

Connecting ScratchDuino.Lab and Selecting a Port in Scratch

In the Scratch window that appears, select the blue block Sensing, then right-
click on the block Sensor and select show ScratchBoard watcher (see Fig. 7).
Then right-click on the grey background and choose select serial/USB port (see
Fig. 8). Select /dev/cu.usbmodem1411 in the drop-down list.

http://files.scratchduino.ru/Software/Mac/Scratch.dmg

 13

Components of the Kit

ScratchDuino.Lab (άDigital Laboratoryέ) is intended for laboratorial and illus-
trating experiments, research projects of the students, and hands-on training at
the IT-classes and the lessons on natural sciences in primary and secondary
schools, 5ς11 grades.

The equipment includes:

½ Arduino UNO microcontroller with the options of standalone operation
and cinnection to a PC with monitor;

½ built-in sensors (see Fig. 13);

½ attachable sensors (Fig. 11), designed for metering the parameters of ob-
jects at study by the external devices.

Fig. 11. Attachable temperature sensor
and connecting cable with three crocodile clips.

Fig. 12. 180-cm-long cable to connect ScratchDuino.Lab to a PC.

 14

Fig. 13. Components of ScratchDuino.Lab circuit board:
1τ Sockets for additional analog sensors
(resistance-A and resistance-B variables1);

2 τ Digital input for an external device*; 3 τ Button (Button variable);
4 τ Speaker; 5 τ Controllable matrix of eight LEDs*;

6 τ Three LEDs (red, yellow, and green), each at its own digital input*;
7 τ Four buttons (resistance-A, resistance-B, resistance-C,

and resistance-D variables);
8 τ Light sensor (Light variable); 9 τ Sound sensor (Sound variable);

10 τ Adjustable resistor (Slider variable).

* Additional items, for which a modified version of ScratchBoard is needed.

The kit also includes:

½ the cable to connect the ScratchBoard to a PC (see Fig. 12);

½ a CD with the software;

½ User Manual;

½ written guarantee.

1 The said variables are used in the Scratch programming language, which is considered later.

10

9

8

7

6

5

1

2

3

4

 15

Sensors Testing and Calibration

To be able to compose the programs, it is important to study the response of
the sensors and the values taken by the buttons of ScratchDuino.Lab. Despite
their being standard, the sensors in different kits of ScratchDuino.Lab can have
their own individual ranges of sensitivity.

Table 1. Sensitivity Ranges and Values Taken by the ScratchDuino.Lab Buttons

Sensor or button (name of the variable) Min Max

Light sensor (Light variable) 12 98

Sound sensor (Sound variable) 23 100

Adjustable resistor (Slider variable) 0 100

Black button (Button variable) false true

Four buttons (resistance-A, resistance-B, resistance-C,
and resistance-D variables)

0 100

Temperature sensor
(when connected, uses the resistance-A variable)

0,6 22,5

Calibration of Light Sensor
To calibrate a light sensor, a meter of illuminance is used. In our case, it is digi-
tal luxmeter LX101. The measurements shown in Table 2 and in Fig. 14.

Table 2. Relation between the Meterage of ScratchDuino.Lab Light Sensor
and Luxmeter LX-101

Luxmeter
LX-101, lx

1 3 11 22 37 42 53 63 75 83 92

1
1
0

2
2
0

3
2
0

4
4
0

5
6
2

Light
sensor

12 47 60 65 67 67 69 70 70 71 72 73 75 82 86 90

 16

Fig. 14. Area of linear dependency (confidence range)
between the Luxmeter LX-101 and the light sensor of ScratchDuino.Lab

meterage curves.

Using the Luxmeter LX-101 user manualΩǎ guidelines on recommended level of
luminance at working places (Fig. 15), it is possible to assume that the built-in
light sensor of ScratchDuino.Lab can be with great confidence used as a
luxmeter at a luminance of up to 100 lx calculated by Formula 1. This formula is
obtained as per a trend line (approximation of the function) for the light sensor
values from 12 to 73.

y = x - 15,62 (1)

confidence range of the sensor

Fig. 15. Recommended luminance at working places
and the confidence range of ScratchDuino.Lab light sensor.

 17

Calibration of Sound Sensor
The measurements are made in a room at complete silence. In this case the
sensor indicates the value 23. The natural sounds (voice, music etc.) corre-
spond to a range of 60ς80. A maximum of 100 can be achieved when you make
a vigorous breathing-out into the sensor. To identify the functional dependence
of the sensor sound in decibels (dB), you need to use a digital phonometer.
Methods of measurements and the derivation of a formula are similar to those
described for the calibration of light and temperature sensors.

The Values Taken by Adjustable Resistor Slider
At the leftmost position it reads as 0, at the rightmost position τ as 100.

The Values Taken by Black Button
On pressing this button, its value toggles from false to true and vice versa.

The Values Taken by Coloured Buttons
On pressing any of these buttons, its value toggles from 0 to 100 and vice versa.
All the buttons have a usual group of contacts: a couple of fixed contacts and a
movable contact between them. At the movable contact, a rod is fastened that
protrudes out of the case of the circuit board.

Calibration of Temperature Sensor
To calibrate a temperature sensor, we are going to measure the temperature
of water being continuously heated up, and we put the readings, taken from a
thermometer and from a sensor panel, into Table 3. Make a graphical plot
based on the data of the table (Fig. 16).

Table 3. Relation between the Values Taken from the Attachable Temperature
Sensor and the Household Thermometer

͔͔́ͪͣͦͣͭͪΣ
͎ͪ͊͒ͯͫ·

0 5 10 15 20 25 30 35 40 45 50

˨͊ͭ;͙͟ ͔͔ͭͣͨπ
ͪ͊ͭͯͪ·Σ ͔͒Φ

0,6 2,2 4,3 6,7 9 11,1 13,7 15,8 17,9 20,2 22,5

The trend line (approximation of the function) shows that the relation between
the values taken from the attachable temperature sensor and from the house-
hold thermometer is linear and can be expressed by Formula 2:

y = 0,4497x - 0,4165 (2)

 18

Fig. 16. The relation between the data obtained
from the attachable temperature sensor and from the household thermometer.

For a whole host of projects, not only direct but also an inverse dependency of
the said meterages can be required. To that effect, just derive the inverse rela-
tionship, expressing ͻ by ͯ :

ͻ Ґ нΣннотͯ Ҍ лΣфнсм (3)

Sensors calibration Calibration of the sensor is a specific area of educational
research performed using the ScratchDuino.Lab. The measurements can be
made by different meters and following different methods. The measure-
ment errors also can differ. Within the framework of ScratchDuino commu-

nity (see about it below), you can offer your own meterage and formulas. You
can also share with other members of this community the experience concern-
ing the calibration of the sensors, the ones shipped with the kit or additional.

 19

Basic Concepts of Scratch

Scratch is a computer model of the real world. Its environment with the items
of graphical user interface (GUI) is shown in Fig. 17.

Fig. 17. The Scratch environment:
1 τ Info Panel; 2 τ the Block Palette (groups of commands);
3 τ the Script Area; 4 τControl group; 5 τ the Actor (sprite);

6 τ background of current Stage; 7 τ the Sprites Panel; 8 τ the Stage area.

The world of Scratch consists of many objects (the word άobjectέ stems from
Latin objectum, which means a thing) populating a common space. The objects
are anything that exists in the nature: people, animals, wind, snow, tree,
sun, letters, ice-cream, candies and all.

The objects can also be Actors to implement the algorithms.

1

2

3

4

5

6

7

8

 20

An algorithm is an exact, step-by-step instruction determining the behaviour of
the Actor(s) that brings the data (taken, for example, from the ScratchDuino.
Lab sensors) to a required result. Development of an algorithm is a creative
process. An algorithm can be represented as a script.

Scripts in Scratch and in ScratchDuino are made of ready blocks-commands, re-
sembling the bricks of Lego. This syntax is quite intuitive. To make a script, you
have to join several blocks (just snap them together in the Script Area). The
blocks and the order they follow each other are important, because they define
what an Actor is going to do.

Actors in Scratch are depicted by sprites (Sprite is a supernatural creature, an
elf), while the space where the events are happening is a Stage. The Stage can
be an Actor too. The stories in Scratch are described using the algorithms.
There are only two kinds of Actors in Scratch: the Stage and the sprites.

Sprites, either created by the users, or downloaded or found in a sprite library,
are the Actors that operate within the project. Many projects include, as a min-
imum, one sprite that can move around the project screen, unlike the stage.

Except for running the commands, a sprite can change its costume. The ap-
pearance of a sprite can be changed directly or with the commands in the
scripts editing area. To change a costume, you need to go to the Costumes tab,
found next to the Scripts and Sounds tabs. The Costumes tab contains the
whole list of costumes, and the costumes can be modified or imported from a
sprite library or from your PC. You can create and add a new costume as well.

The Stage includes a set of images found under the Backgrounds tab (Fig. 18),
which are background for the spritesΩ actions. On launching the program, a
background image is ready: it is a white rectangle, 480-pixel wide and 360-pixel
high. A άpixelέ is a dot, a minimal component of rasterized computer graphics.

Fig. 18. The Backgrounds Tab.

 21

The command set for the sprites consists of 125 commands, while for the stage
there are 85 of them. This set allows for the implementation of a vast variety of
algorithms. All the commands are found at the top-left pane of the program
window (the Block Palette), distributed into eight groups. The groups are high-
lighted with different colours: Motion, Looks, Sound, Pen, Control, Sensing,
Operators, and Variables.

Projects in ScratchDuino consist of several scripts for the sprites, performed
simultaneously (in parallel) using one or more costumes (Fig. 19).

Fig. 19. The structure of a project in Scratch.
Highlighted is the mandatory part.

The rest depends on the authorΩs design.

To describe the projects in Scratch, the following pattern is used:

½ theme;

½ requirements to meet;

½ description of the project progressing and/or explanations for the script;

½ the picture of the script.

PROJECT
in Scratch

Sprite 1 Stage Sprite...

˿͚ͨͪ͊ͭ Χ

 - Script 1
- Script Χ
- Script 2 (Stop)

- Costume 1
- Costume 2
- Costume...

- Script 1
- Script 2
- Script Χ

- Costume 1
- Costume 2
- Costume...

 22

Basic Algorithms of Scratch

The algorithms can be divided into three kinds as of their structure: linear,
branching, and loops.

Linear algorithm is such one, for which all the commands are done one after
another and only once. Its script is a sequence of blocks, following from top to
bottom in the order of their performing.

Theme: άThe Crab Draws the Stairsέ.

Requirements:

½ the Actor is the Crab;

½ the drawing is made like in an animated cartoon;

½ an easy option to change the number of stair-steps and their size is pro-
vided;

½ the script runs if the value of Slider variable is greater than 50.

Implementation of the project άThe Crab Draws the Stairsέ
using a linear algorithm

We have to teach our Crab to draw the stairs. The Crab lives in a rectangular
field of a size 480Ҏ360 pixels and knows how to locate a place in the field by its
coordinates2. The Crab can make a prescribed number of moves; wait; and
point in the directions left and right by 0, 90, and 180 degrees. The Crab has a
pen that leaves a line when put down. A script for the Crab is shown in Fig. 20.
As per this script, the Crab draws 3 steps (Fig. 21). The script starts running on
pressing the άup arrowέ key.

If you use a purely linear algorithm:

½ the process of άbuildingέ the stairs is not visible, but the picture appears
instantly;

½ changing the number of stair-steps needs to make the script longer and
to edit numeric values in each block, so this method cannot be called
easy;

½ the requirement concerning the Slider cannot be met.

2
 It is reasonable to start studying Scratch since the 5th grade, as the students have to be aware of some math-

ematical notions, such as άŎƻƻǊŘƛƴŀǘŜ ǇƭŀƴŜέ, άǇƻǎƛǘƛǾŜ ŀƴŘ negative ƴǳƳōŜǊǎέ, άŘŜŎƛƳŀƭ ŦǊŀŎǘƛƻƴέ, άŘŜƎǊŜŜ
measure ƻŦ ŀƴƎƭŜǎέ etc. However, simple projects can be implemented in primary school as well.

 23

Fig. 20. Linear algorithm to draw the stairs.

Fig. 21. The result of linear script for Sprite 1 in a Crab costume
at a Stage with white background (courtesy of crab1-a collection).

Conclusion 1. When only the linear algorithm is used, you cannot meet all the
requirements.

 24

Loop algorithms. A loop is a series of commands to be repeated until a
specified condition becomes true. Thanks to the operators controlling the loop,
the script can be done much shorter. Scratch provides the blocks for four kinds
of loops: unconditioned (endless); with a counter; with a pre-condition; and
with a post-condition (Fig. 22).

Fig. 22. Loops in Scratch.

Implementation of the project άThe Crab Draws the Stairsέ
using a linear algorithm and a loop

It is easy to notice that in Fig. 20, a set of commands is repeated: make 60
moves, point in the direction 0ϲ όupwards), make 40 moves, point in direction
90ϲ. That means we can use a loop.

Fig. 23. A loop.

Notice that the script in Fig. 23 is shorter than in Fig. 20, and the Crab has
drawn 5 stair-steps (Fig. 24). Now it will be enough to change the value in the
repeat box, and you will have as many stair-steps as you like. If we change the
number of the moves (the height of a stair-step) from 40 to 20 in just one
block, all the stair-steps will change.

When we use a loop:

½ the process of άbuildingέ the stairs is not visible anyway;

 25

½ we have managed to meet the requirement about easily changing the
number and the size of the stair-steps;

½ the requirement concerning the Slider cannot be met yet.

Fig. 24. The result of script with a loop for Sprite 1 in a Crab costume
at a Stage with white background (courtesy of crab1-a collection).

Conclusion 2. When only the linear algorithm and a loop is used, you cannot
meet all the requirements of the project άThe Crab Draws the Stairsέ.

Branching algorithms. An algorithm is called branching if it has several options
to choose for a further action. The choice can be simple (in case of two alterna-
tive options) or complicated (when there are more than two options) (Fig. 25).

Fig. 25. A complicated choice.

The moment of a choice is called the branching point. Branching is one of the
three basic structures of algorithms (along with the linear flow of commands
and the loop). All the programming languages have special operators (or com-
mands) τ conditional operators, to implement an action depending on a stat-
ed condition. Scratch has three conditional operators in its Control group:
complete branching (IF-THEN-ELSE), incomplete branching (IF-THEN), and
pause (WAIT UNTIL) (Fig. 26).

Fig. 26. Conditional operators in Scratch.

 26

Implementation of the project άThe Crab Draws the Stairsέ
using a linear algorithm, a loop, and a branching

As shown in Fig. 27, the ready script (Fig. 23) was added by:

1) two blocks of pauses , enabling you to see (like in an ani-
mated cartoon3) the process of drawing the stairs;

2) a block of incomplete branching , that checks the value of the Slid-
er variable from the connected ScratchDuino.Lab. In accordance with the speci-
fied condition, the script runs if the Slider rests at the right-hand side of its
άlaneέ, that is, the value of the Slider variable is greater than 50.

Fig. 27. An algorithm with branching.

Conclusion: The project can be implemented in full only in case when all three
kinds of algorithms (linear, loop, and branching) are used.

3
 Such delay, convenient for human eye, belongs to the methods of developing the projects with animation.

 27

How to άbuildέ a block checking a condition

Fig. 27 shows a block checking a condition. Such block is άbuiltέ as follows: you
άdragέΣ one after another, the block IF-THEN (from the Control group), a logical
expression (from the Operators group), and the sensor value (from the Sensing
group) (Fig. 28).

Fig. 28. How to άbuildέ a block checking a condition.

The numeric value can be changed in the Edit field.

Editing the script

If you need to remove a block from a ready script, the rule άDetach at the bot-
tomέ is used. As an example, to remove a block from the script in Fig. 29 (the
block is marked by a red arrow), you have to:

мύ άtear awayέ the piece of the script below the block that you want to remove,
putting this piece aside;

нύ άtear awayέ the said block in the same way;

3) bring back the former άtorn awayέ piece and snap it to the bottom of the
upper piece of the script.

Fig. 29. The way to remove a block from the script.

 28

Projects To Make Use
of the ScratchDuino.Lab Components

Buttons

ScratchDuino.Lab allows you to operate virtual Actors. Consider using the but-
tons (resistance-A, resistance-B, resistance-C, and resistance-D variables).

Theme: άThe CatΩs Journeyέ.

Requirements:

½ for the άjourneyέ, an appropriate picture is set as a background;

½ on pressing the coloured buttons of ScratchDuino.Lab, the Cat must
move rightwards, leftwards, upwards, and downwards;

½ the script stops on pressing the space bar of the keyboard.

Implementation

Click on the Stage and select the Background tab. Select New background and
click the Import button. A window with ready images will open. Select the Na-
ture folder and in this folder, select the file desert.

Fig. 30. Two sample scripts to control a sprite in a Cat costume (file cat1-a)
with the ScratchDuino.Lab keys. Framed is the first script that stops all scripts

on pressing the space bar.

 29

Slider

Theme: άVarying the Speed of the Ball by Sliderέ.

Requirements:

½ the Actor is the Ball;

½ launching the script, the Ball starts to move horizontally άback and
forthέ, bouncing from the walls within the Stage;

½ the speed of the Ball is controlled with Slider;

½ the script stops on pressing the space bar of the keyboard.

Implementation

The key idea of the solution is to change the coordinate step along the ͻ axis.
The effect of bouncing at the border of the Stage is implemented through a
comparison of the current coordinate of the Ball (ͻ position) and the coordi-
nates of the left and right borders of the Stage: 200 and -200.

Fig. 31. The script and the result of its performance.

 30

Sound Sensor

Theme: άHop on a Signal (a clap or a word uttered)έ.

Requirements:

½ the Actor is the Dancer;

½ when the script is launched, you can see the Dancer ready to hop;

½ on a loud shriek (or a clap of your hands), the Dancer hops and returns to
initial position in 3 seconds;

½ if the noise level in the room is greater than 24 all the way (for example,
some music is playing), the Dancer still returns to initial position in 3 se-
conds (to have a rest) and then hops again;

½ the script stops on pressing the space bar of the keyboard.

Implementation

Knowing the value at which the sound sensor reacts to a loud sound (a clap),
you can choose the value to be put into the condition box. The solution is to
change the costume of one sprite depending on the result of the check. Fig. 32
shows that on changing the sensor value (greater than 24) the costume is
changed.

Fig. 32. The script and the result of its performance.

The effect of a hop is achieved by changing the center of the second costume
(Fig. 33).

Fig. 33. Location of the new center for the costume ballerina-d.

 31

Theme: άShow Your Magnitude!έ

Requirements:

½ two Actors are the Recorder and the Bat;

½ the Recorder draws a red line which is the sound magnitude;

½ the Bat hovers somewhere, άhearsέ the sounds, and άremembersέ the
maximal value of the Sound variable, displaying it in a cloud (Fig. 34);

½ the value of the move is varied by the Slider;

½ on pressing the space bar, all the scripts stop running, the picture disap-
pears, and the Recorder is sent to initial position (bottom-left corner of
the Stage).

Fig. 34. The magnitude shown when the song Ohne dich (Rammstein) is played.
The maximal magnitude is 72.

Implementation

Create two sprites (Fig. 35):

½ on your own, make a red square which is the Recorder;
½ take the Bat from the collection.

Fig. 35. Sprites for the project άShow Your Magnitude!έ

 32

As per our study of the sound sensor (see above), its minimal value at silence is
23. Therefore, you need to subtract this number so that the magnitude in the
field would be zero. The sensitivity range is 23 to 93, that is, approximately 70
units, while the Stage to show the magnitude is 360-pixel high. Dividing 360 by
70, we obtain the multiplier for the magnitude to fit into the Stage. ά-150έ is
the value of the step to move the picture downwards along the y axis, as the
coordinate center of the sprite (a point of (0;0) coordinates) is in the middle of
the Stage. The SliderΩs range is 0 to 100. Dividing by 200 allows to vary the step
from 0 to 0.5.

Fig. 36. Two scripts for Sprite 1: one άdrawsέ, while the other, if the space bar is
pressed, άerasesέ the picture and sets the Self-Recorder to the initial position.

The BatΩs task requires to use a variable max4. Before the loop, it is set to 0. If
within the loop the sound sensor value exceeds zero, the value of variable max
is updated and displayed in the cloud for 1 second.

Fig. 37. Script for Sprite 2.

4
 The variables are created in the Variables group.

 33

External Temperature Sensor

Theme: άHousehold Thermometerέ.

Requirements:

½ Two Actors are the Scale and the Red Arrow;

½ the Scale of the household thermometer is placed on the left;

½ the Red Arrow moves along the Scale, while on the left a numeric value
of the temperature is displayed in an output window (Fig. 39);

½ you have to determine the size of one degree in pixels at the Scale.

½ on pressing the space bar, all the scripts stop running, and the Scale is
sent to initial position (bottom-left corner of the Stage).

Implementation

On your own, make both sprites: the temperature Scale ranging 0 to +50 and
the Red Arrow (Fig. 38).

Fig. 38. Sprites for the project.

Fig. 39. Three views of the screen, showing the results of the project.
You can see a dynamic change of the measured temperature of the ambience.

We are going to make two scripts for Sprite 2 (Scale): a standard stop on press-
ing the space bar, while on launching the project (on pressing the άup arrowέ
key) the Scale is placed in the bottom-left corner of the Stage (Fig. 40).

